Warning
This content was generated by AI.
AI can make mistakes. Check important info.
iStar Modeling: Transition from Traditional Classroom Learning to Online Learning
Context
10/30/24About 2 min
Warning
This content was generated by AI.
AI can make mistakes. Check important info.
Warning
This content was generated by AI.
AI can make mistakes. Check important info.
顶层目标: 开发一个本地优先的图形学实验跟踪与管理工具,满足计算机图形学和机器学习研究人员在本地环境中进行高效、可靠的实验管理需求。
Warning
This content was generated by AI.
AI can make mistakes. Check important info.
本项目属于计算机图形学 (Computer Graphics) 和机器学习 (Machine Learning) 的交叉领域, 具体聚焦于实验跟踪与管理 (Experiment Tracking and Management) 工具的研发. 计算机图形学是研究如何利用计算机生成、处理和显示图像的学科, 广泛应用于游戏开发、电影特效、虚拟现实、增强现实等领域. 机器学习则是通过算法使计算机系统能够从数据中学习和改进性能, 近年来在图像识别、自然语言处理、自动驾驶等领域取得了显著进展.